Design of the Transit Access Point Hardware Platform
Patrick Murphy, J. Patrick Frantz, Edward Knightly & Behnaam Aazhang

Project Abstract
A transit access point, or TAP, is a wireless network base station with multiple air interfaces, each composed of multiple antennas. TAPs provide high-speed data links to mobile users and to other TAPs. These TAP-to-TAP links allow access points to be connected to a larger network without a wired connection. We describe here the design of the hardware for the TAP platform.

Motivation
- Most residential internet access is slow & expensive
- Average “broadband” is slower than 1Mbps
- US broadband penetration only around 50%
- Current options are too slow
 - Cable & DSL can’t achieve widespread 100+ Mbps
 - Fiber to the home could cost $100+ billion
- Broadband wireless may be the answer
 - WiFi “hot-spots”
 - Access point, router & expensive T1 connection
 - High speed but very limited coverage
- 3G and fixed wireless (WiMAX, LMDS)
 - Good coverage but slow
 - Significant spectrum licensing costs
 - Untested scalability

Hardware Requirements
- Substantial processing resources
 - New algorithms will be complex
 - Must be programmable & very flexible
- Multiple wireless interfaces
 - Each uses multiple radios & antennas
 - Same interface must transmit & receive
- Wired network interfaces
 - Some TAPs need internet connections
- Extensible hardware design
 - Needs will vary between TAPs

Design Decisions
- FPGAs for baseband processing
 - Good for complex DSP-intensive algorithms
 - Highly flexible
 - Full control of parallelism vs. resource use
 - Many design tool flow options
 - A few drawbacks to FPGAs
 - Substantial power consumption
 - Chips are expensive (without donations)
- Wideband 2.4GHz radios
 - Same frequency band as 802.11b/g
 - We use a commercial transceiver chip
- Partitioning of hardware
 - Single board per TAP is expensive & risky
 - Design is divided into three boards
- Xilinx Virtex-II Pro FPGAs
 - Substantial logic resources
 - Embedded PowerPC cores
 - Multi-gigabit transceivers (RocketIO)

Acknowledgements
Special thanks to Xilinx, Maxim and Nallatech for their support throughout this project.

This project is funded by NSF grants ANI-0325971, EIA-0224458 and EIA-0321266.